Please rotate your device to landscape mode for a better experience.
Connexion

Roadrunners
GP: 35 | W: 26 | L: 8 | OTL: 1 | P: 53
GF: 134 | GA: 96 | PP%: 30.12% | PK%: 86.08%
DG: Greg Vandersteen | Morale : 75 | Moyenne d’équipe : 59
Prochains matchs #393 vs Marlies

Centre de jeu
Butter Knives
16-14-4, 36pts
3
FINAL
4 Roadrunners
26-8-1, 53pts
Team Stats
OTL1SéquenceW4
10-5-3Fiche domicile16-2-0
6-9-1Fiche domicile10-6-1
3-4-3Derniers 10 matchs8-2-0
4.85Buts par match 3.83
5.06Buts contre par match 2.74
17.57%Pourcentage en avantage numérique30.12%
69.15%Pourcentage en désavantage numérique86.08%
Firebirds
19-17-0, 38pts
2
FINAL
5 Roadrunners
26-8-1, 53pts
Team Stats
L2SéquenceW4
11-6-0Fiche domicile16-2-0
8-11-0Fiche domicile10-6-1
4-6-0Derniers 10 matchs8-2-0
4.56Buts par match 3.83
4.53Buts contre par match 2.74
16.85%Pourcentage en avantage numérique30.12%
80.23%Pourcentage en désavantage numérique86.08%
Roadrunners
26-8-1, 53pts
Jour 79
Marlies
21-12-3, 45pts
Statistiques d’équipe
W4SéquenceW2
16-2-0Fiche domicile9-6-2
10-6-1Fiche visiteur12-6-1
8-2-010 derniers matchs7-3-0
3.83Buts par match 4.31
2.74Buts contre par match 4.31
30.12%Pourcentage en avantage numérique26.80%
86.08%Pourcentage en désavantage numérique78.02%
Roadrunners
26-8-1, 53pts
Jour 81
Lynx
22-13-0, 44pts
Statistiques d’équipe
W4SéquenceL1
16-2-0Fiche domicile11-7-0
10-6-1Fiche visiteur11-6-0
8-2-010 derniers matchs7-3-0
3.83Buts par match 4.29
2.74Buts contre par match 4.29
30.12%Pourcentage en avantage numérique28.05%
86.08%Pourcentage en désavantage numérique89.47%
Fighting Pandas
17-12-6, 40pts
Jour 82
Roadrunners
26-8-1, 53pts
Statistiques d’équipe
OTL1SéquenceW4
7-6-5Fiche domicile16-2-0
10-6-1Fiche visiteur10-6-1
3-4-310 derniers matchs8-2-0
4.20Buts par match 3.83
3.71Buts contre par match 3.83
25.71%Pourcentage en avantage numérique30.12%
81.19%Pourcentage en désavantage numérique86.08%
Meneurs d'équipe
Cutter GauthierButs
Cutter Gauthier
22
Brandt ClarkePasses
Brandt Clarke
38
Brandt ClarkePoints
Brandt Clarke
45
Cutter GauthierPlus/Moins
Cutter Gauthier
16
Jet GreavesVictoires
Jet Greaves
25
Jet GreavesPourcentage d’arrêts
Jet Greaves
0.917

Statistiques d’équipe
Buts pour
134
3.83 GFG
Tirs pour
1097
31.34 Avg
Pourcentage en avantage numérique
30.1%
25 GF
Début de zone offensive
41.1%
Buts contre
96
2.74 GAA
Tirs contre
1140
32.57 Avg
Pourcentage en désavantage numérique
86.1%%
11 GA
Début de la zone défensive
39.2%
Informations de l'équipe

Directeur généralGreg Vandersteen
EntraîneurDave Semenko
DivisionMetropolitan
ConférenceEastern Conference
Capitaine
Assistant #1
Assistant #2Nico Sturm


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro25
Équipe Mineure18
Limite contact 43 / 50
Espoirs39


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Cutter Gauthier (R)X100.00685687727374927250717364545459084660212500,000$
2Nico Sturm (A)X100.00786691677567757077636067507371085640304500,000$
3Anthony ManthaX100.006869776384665469506068566372730836103142,000,000$
4Tyson JostX100.00696178666665627160625760506565086600273500,000$
5David GustafssonX100.00606997657062606867605262506363085590253500,000$
6Akil Thomas (R)X100.00737096636964566351574958506262084570253500,000$
7Joey AndersonX100.00585099577464555250525064506769085550271500,000$
8Nikita Chibrikov (R)X100.00493590586050515050495349515664083510222500,000$
9Brandt ClarkeX100.00596171737370907450745572565862086660221500,000$
10Sam MalinskiX100.00665789636769886750615472566768085640273500,000$
11Philippe MyersX100.00796785607968636450555269556870087630282500,000$
12Zac JonesX100.00655976656771686950655168556163084620252500,000$
13Matthew KesselX100.00655982607462586350545166556365083600252500,000$
14John KlingbergX100.00506265576654555350505051567674050540332500,000$
Rayé
1Ondrej PalatX100.00755591696974886950647063517774067650342500,000$
2Nils AmanX100.00635493626460546953615056506062020570251500,000$
3Max JonesX100.00816166617863565650555058506462020560273500,000$
4Ville KoivunenX100.00505775545562555850665050506169020540224500,000$
5Oliver Kapanen (R)X100.00505593577061545257545056625557020530223500,000$
6Thomas BordeleauX100.00503589576350515050505050506362020510232500,000$
7Sam PoulinX100.00575885508150515250505050505859020510242500,000$
8Artyom Levshunov (R)X100.00646077647557586550635059555156020580204500,000$
9Ian MitchellX100.00525692556851555750505061556365020550262500,000$
MOYENNE D’ÉQUIPE100.0063588562706263625359546053636506058
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jet Greaves (R)100.0079657270716664716876506066087670243500,000$
2Akira Schmid100.0056626274505050505051506060085550252500,000$
Rayé
MOYENNE D’ÉQUIPE100.006864677261585761596450606308661
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Dave Semenko8787878787501CAN616500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brandt ClarkeRoadrunners (UTA)D357384514260675751184413.73%4784124.0549132468022061000%000001.0700000243
2Cutter GauthierRoadrunners (UTA)LW352220421614059691714615212.87%1292926.5731418621012652038.18%5500010.9011000622
3Gustav NyquistUtah MammothRW291716338401536114367314.91%952418.090771559000004333.33%2700011.2611000333
4Tyson JostRoadrunners (UTA)C35923325155508289186910.11%968619.623101316630110421054.42%71300000.9300001411
5Nico SturmRoadrunners (UTA)C3510213114200617396286410.42%1464918.550339660001752062.98%90500000.9500000024
6Ondrej PalatRoadrunners (UTA)LW2718133102354432102199217.65%650918.88831124480002408264.00%2500011.2200010534
7David GustafssonRoadrunners (UTA)C35121628340169112234719.84%765618.7500005000041158.00%70000000.8500000213
8Anthony ManthaRoadrunners (UTA)RW351413271395642997258114.43%278722.501569610002321152.94%8500000.6900001142
9Sam MalinskiRoadrunners (UTA)D353232674028485513305.45%5682523.5822417530003471175.00%400000.6300000012
10Philippe MyersRoadrunners (UTA)D355162112261072193582914.29%3664918.542351760000055010%000000.6500101113
11Zac JonesRoadrunners (UTA)D3521517-214055382318168.70%4569219.771124120001251066.67%300000.4900000020
12Joey AndersonRoadrunners (UTA)RW35371042020214414316.82%960817.3800016000001060.61%3300000.3300000000
13Akil ThomasRoadrunners (UTA)C3536954032424611236.52%33299.4200000000001053.26%35300000.5500000021
14Matthew KesselRoadrunners (UTA)D35279-618039161891311.11%4361017.451012300006000%000000.2900000000
15Ben ChiarotUtah MammothD5123-740207831012.50%1311723.560223700008010%000000.5100000001
16Nikita ChibrikovRoadrunners (UTA)RW3520262026102720.00%23279.3400000000000057.14%1400000.1200000010
17Max JonesRoadrunners (UTA)LW1011100421020%099.6500000000000050.00%200002.0700000000
Statistiques d’équipe totales ou en moyenne5171302373678121925648668108230280712.01%313975518.8725467115958013411465231057.45%291900030.7522113242729
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jet GreavesRoadrunners (UTA)3525810.9172.722074019411290211.0002350620
2Akira SchmidRoadrunners (UTA)11000.9001.67360011000000035000
Statistiques d’équipe totales ou en moyenne3626810.9172.7021100195113902123535620


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Akil ThomasRoadrunners (UTA)C252000-01-02CANYes195 Lbs6 ft0NoNoFree AgentNoNo32024-09-04FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Akira SchmidRoadrunners (UTA)G252000-05-12CHENo190 Lbs6 ft5NoNoTrade2024-11-08NoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Anthony ManthaRoadrunners (UTA)RW311994-09-16CANNo234 Lbs6 ft5NoNoFree AgentNoNo42025-07-23FalseFalsePro & Farm2,000,000$200,000$114,444$No2,000,000$2,000,000$2,000,000$------2,000,000$2,000,000$2,000,000$------NoNoNo------Lien / Lien NHL
Artyom LevshunovRoadrunners (UTA)D202005-10-28BLRYes208 Lbs6 ft2NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien / Lien NHL
Brandt ClarkeRoadrunners (UTA)D222003-02-09CANNo200 Lbs6 ft2NoNoTrade2024-08-13NoNo1FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Lien / Lien NHL
Cutter GauthierRoadrunners (UTA)LW212004-01-19SWEYes201 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
David GustafssonRoadrunners (UTA)C252000-04-11SWENo196 Lbs6 ft2NoNoN/ANoNo32024-08-13FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Ian MitchellRoadrunners (UTA)D261999-01-18CANNo192 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Jet GreavesRoadrunners (UTA)G242001-03-30CANYes190 Lbs6 ft0NoNoN/ANoNo32024-08-25FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Joey AndersonRoadrunners (UTA)RW271998-06-19USANo207 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Lien / Lien NHL
John KlingbergRoadrunners (UTA)D331992-08-14SWENo185 Lbs6 ft2NoNoAssign ManuallyNoNo22025-12-18FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Lien / Lien NHL
Matthew KesselRoadrunners (UTA)D252000-06-23USANo205 Lbs6 ft2NoNoAssign ManuallyNoNo22024-08-21FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Max JonesRoadrunners (UTA)LW271998-02-17USANo216 Lbs6 ft3NoNoN/ANoNo32024-08-20FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Nico SturmRoadrunners (UTA)C301995-05-03DEUNo209 Lbs6 ft3NoNoFree AgentNoNo42025-07-23FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien / Lien NHL
Nikita ChibrikovRoadrunners (UTA)RW222003-02-16RUSYes170 Lbs5 ft10NoNoTrade2025-06-25NoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Nils AmanRoadrunners (UTA)C252000-02-07SWENo179 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Lien / Lien NHL
Oliver KapanenRoadrunners (UTA)C222003-07-29SWEYes194 Lbs6 ft2NoNoFree AgentNoNo32025-07-25FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Ondrej PalatRoadrunners (UTA)LW341991-03-28CZENo194 Lbs6 ft0NoNoAssign ManuallyNoNo22024-08-21FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Philippe MyersRoadrunners (UTA)D281997-01-25CANNo219 Lbs6 ft5NoNoN/ANoNo22024-08-20FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Sam MalinskiRoadrunners (UTA)D271998-07-27USANo190 Lbs5 ft11NoNoFree AgentNoNo32024-10-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Sam PoulinRoadrunners (UTA)RW242001-02-25CANNo227 Lbs6 ft2NoNoN/ANoNo22024-08-10FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Thomas BordeleauRoadrunners (UTA)C232002-01-03USANo180 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Tyson JostRoadrunners (UTA)C271998-03-14CANNo187 Lbs5 ft11NoNoN/ANoNo32024-08-20FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Ville KoivunenRoadrunners (UTA)RW222003-06-13FINNo161 Lbs5 ft11NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien / Lien NHL
Zac JonesRoadrunners (UTA)D252000-10-18USANo190 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Lien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2525.60197 Lbs6 ft12.48560,000$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Cutter GauthierNico Sturm40122
2Tyson JostAnthony Mantha30122
3David GustafssonJoey Anderson20122
4Cutter GauthierAkil ThomasNikita Chibrikov10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brandt Clarke40122
2Sam MalinskiPhilippe Myers30122
3Zac JonesMatthew Kessel20122
4Brandt Clarke10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Cutter GauthierNico Sturm60122
2Tyson JostAnthony Mantha40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brandt Clarke60122
2Sam MalinskiPhilippe Myers40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Nico SturmCutter Gauthier60122
2Tyson Jost40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brandt Clarke60122
2Sam MalinskiPhilippe Myers40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Nico Sturm60122Brandt Clarke60122
2Tyson Jost40122Sam MalinskiPhilippe Myers40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Nico SturmCutter Gauthier60122
2Tyson Jost40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Brandt Clarke60122
2Sam MalinskiPhilippe Myers40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Cutter GauthierNico SturmBrandt Clarke
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Cutter GauthierNico SturmBrandt Clarke
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Anthony Mantha, Tyson Jost, David GustafssonAnthony Mantha, Tyson JostAnthony Mantha
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Philippe Myers, Zac Jones, Matthew KesselPhilippe MyersPhilippe Myers, Zac Jones
Tirs de pénalité
, Cutter Gauthier, , Nico Sturm, Anthony Mantha
Gardien
#1 : Jet Greaves, #2 : Akira Schmid


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces11000000422110000004220000000000021.0004812004844376263543503869186411100.00%20100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
2Admirals330000001385220000008531100000053261.000132336004844376893543503869982418577114.29%9277.78%0680119456.95%664113758.40%33357158.32%944678723229445239
3Americiens210001001165110000007161000010045-130.750111930004844376673543503869792852488337.50%40100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
4Barracuda11000000422000000000001100000042221.00048120048443764435435038691632184125.00%000%0680119456.95%664113758.40%33357158.32%944678723229445239
5Broncos4110200017134200020009722110000086260.7501733500048443761333543503869972618566233.33%7185.71%0680119456.95%664113758.40%33357158.32%944678723229445239
6Bruins10000010431000000000001000001043121.00046100048443762435435038692396173133.33%3166.67%0680119456.95%664113758.40%33357158.32%944678723229445239
7Butter Knives32100000972321000009720000000000040.66791625004844376873543503869128518678225.00%3166.67%0680119456.95%664113758.40%33357158.32%944678723229445239
8Fighting Pandas32100000853220000007251010000013-240.667813211148443767635435038699223126011436.36%50100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
9Firebirds440000002316733000000171161100000065181.000234265004844376170354350386914935208811327.27%10280.00%2680119456.95%664113758.40%33357158.32%944678723229445239
10Griffins11000000642000000000001100000064221.0006121800484437637354350386945116235360.00%30100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
11Ice Bats10001000321000000000001000100032121.000358004844376353543503869275913000%20100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
12Lions11000000413000000000001100000041321.000461000484437628354350386940134262150.00%110.00%0680119456.95%664113758.40%33357158.32%944678723229445239
13Lynx11000000413110000004130000000000021.0004711004844376293543503869224215000%10100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
14Nordiks31200000915-60000000000031200000915-620.333917260048443769135435038691313922676350.00%10370.00%0680119456.95%664113758.40%33357158.32%944678723229445239
15Quacken11000000312110000003120000000000021.000358004844376263543503869157614300.00%20100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
16Tomahawks1010000013-2000000000001010000013-200.00012300484437618354350386945171020100.00%40100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
17Wombats3020100046-21010000023-12010100023-120.3334610004844376743543503869822724564125.00%110100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
18Wranglers11000000716110000007160000000000021.000713200048443764335435038693310619300.00%20100.00%0680119456.95%664113758.40%33357158.32%944678723229445239
Total35218041101349638181420200077413617760211057552530.757134241375114844376109735435038691140338229675832530.12%791186.08%2680119456.95%664113758.40%33357158.32%944678723229445239
_Since Last GM Reset35218041101349638181420200077413617760211057552530.757134241375114844376109735435038691140338229675832530.12%791186.08%2680119456.95%664113758.40%33357158.32%944678723229445239
_Vs Conference241450311093652815112020006337269330111030282370.771931652581148443767493543503869770227160464581729.31%53786.79%2680119456.95%664113758.40%33357158.32%944678723229445239
_Vs Division158303000634716851020003626107320100027216220.73363116179004844376503354350386947112386280331030.30%40587.50%2680119456.95%664113758.40%33357158.32%944678723229445239

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
3553W41342413751097114033822967511
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
35218411013496
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
1814220007741
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
177621105755
Derniers 10 matchs
WLOTWOTL SOWSOL
820000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
832530.12%791186.08%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
35435038694844376
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
680119456.95%664113758.40%33357158.32%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
944678723229445239


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
25Firebirds3Roadrunners5WSommaire du match
414Roadrunners0Wombats2LSommaire du match
729Broncos5Roadrunners6WXSommaire du match
1147Butter Knives3Roadrunners2LSommaire du match
1362Roadrunners6Nordiks4WSommaire du match
1569Wombats3Roadrunners2LSommaire du match
1676Roadrunners2Broncos3LSommaire du match
1889Roadrunners6Firebirds5WSommaire du match
2099Roadrunners5Admirals3WSommaire du match
21105Fighting Pandas0Roadrunners3WSommaire du match
25119Roadrunners1Fighting Pandas3LSommaire du match
26127Admirals2Roadrunners3WSommaire du match
28134Roadrunners2Wombats1WXSommaire du match
31146Firebirds6Roadrunners7WSommaire du match
33157Roadrunners4Barracuda2WSommaire du match
35170Admirals3Roadrunners5WSommaire du match
38182Roadrunners6Broncos3WSommaire du match
40191Aces2Roadrunners4WSommaire du match
42199Roadrunners4Americiens5LXSommaire du match
44207Roadrunners4Bruins3WXXSommaire du match
46217Wranglers1Roadrunners7WSommaire du match
48230Roadrunners1Tomahawks3LSommaire du match
49238Broncos2Roadrunners3WXSommaire du match
52251Roadrunners3Ice Bats2WXSommaire du match
53261Roadrunners6Griffins4WSommaire du match
54264Quacken1Roadrunners3WSommaire du match
57280Americiens1Roadrunners7WSommaire du match
59292Roadrunners2Nordiks7LSommaire du match
61305Fighting Pandas2Roadrunners4WSommaire du match
65321Lynx1Roadrunners4WSommaire du match
67330Roadrunners1Nordiks4LSommaire du match
69343Butter Knives1Roadrunners3WSommaire du match
71352Roadrunners4Lions1WSommaire du match
73364Butter Knives3Roadrunners4WSommaire du match
76379Firebirds2Roadrunners5WSommaire du match
79393Roadrunners-Marlies-
81404Roadrunners-Lynx-
82412Fighting Pandas-Roadrunners-
84425Roadrunners-Admirals-
86434Broncos-Roadrunners-
89447Canucks-Roadrunners-
91454Roadrunners-Bruins-
93465Roadrunners-Lynx-
95471Roadrunners-Fighting Pandas-
97479Roadrunners-Barons-
98485Admirals-Roadrunners-
100500Wombats-Roadrunners-
102513Roadrunners-Wranglers-
104521Americiens-Roadrunners-
106533Roadrunners-Broncos-
108544Roadrunners-Fighting Pandas-
109550Wombats-Roadrunners-
112568Lynx-Roadrunners-
115582Firebirds-Roadrunners-
119602Lions-Roadrunners-
121612Roadrunners-Canucks-
123623Tomahawks-Roadrunners-
126641Roadrunners-Admirals-
127648Barracuda-Roadrunners-
130658Roadrunners-Marlies-
132669Roadrunners-Butter Knives-
133675Bruins-Roadrunners-
135688Roadrunners-Quacken-
137695Roadrunners-Aces-
138699Ice Bats-Roadrunners-
141716Nordiks-Roadrunners-
143728Roadrunners-Butter Knives-
145732Roadrunners-Americiens-
146741Bruins-Roadrunners-
149758Marlies-Roadrunners-
152778Barons-Roadrunners-
153783Roadrunners-Barracuda-
155790Roadrunners-Firebirds-
158806Nordiks-Roadrunners-
160815Roadrunners-Wombats-
163828Ice Bats-Roadrunners-
164835Roadrunners-Firebirds-
168851Barons-Roadrunners-
169857Roadrunners-Barracuda-
171864Roadrunners-Wombats-
173874Marlies-Roadrunners-
178897Griffins-Roadrunners-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
23 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
820,291$ 1,400,000$ 1,350,000$ 500,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
1,350,000$ 598,350$ 25 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 103 10,556$ 1,087,268$




Roadrunners Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Roadrunners Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Roadrunners Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Roadrunners Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Roadrunners Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA