Please rotate your device to landscape mode for a better experience.
Login

Admirals
GP: 35 | W: 6 | L: 28 | OTL: 1 | P: 13
GF: 124 | GA: 211 | PP%: 24.21% | PK%: 67.61%
GM : Keith | Morale : 23 | Team Overall : 57
Next Games #389 vs Broncos

Game Center
Admirals
6-28-1, 13pts
4
FINAL
5 Marlies
21-12-3, 45pts
Team Stats
L3StreakW2
2-14-1Home Record9-6-2
4-14-0Home Record12-6-1
1-9-0Last 10 Games7-3-0
3.54Goals Per Game4.31
6.03Goals Against Per Game3.47
24.21%Power Play Percentage26.80%
67.61%Penalty Kill Percentage78.02%
Admirals
6-28-1, 13pts
1
FINAL
5 Broncos
13-16-5, 31pts
Team Stats
L3StreakW1
2-14-1Home Record8-10-0
4-14-0Home Record5-6-5
1-9-0Last 10 Games3-5-2
3.54Goals Per Game3.53
6.03Goals Against Per Game4.21
24.21%Power Play Percentage20.55%
67.61%Penalty Kill Percentage61.76%
Broncos
13-16-5, 31pts
Day 78
Admirals
6-28-1, 13pts
Team Stats
W1StreakL3
8-10-0Home Record2-14-1
5-6-5Away Record4-14-0
3-5-2Last 10 Games1-9-0
3.53Goals Per Game3.54
4.21Goals Against Per Game3.54
20.55%Power Play Percentage24.21%
61.76%Penalty Kill Percentage67.61%
Admirals
6-28-1, 13pts
Day 81
Bruins
10-20-5, 25pts
Team Stats
L3StreakL3
2-14-1Home Record4-11-3
4-14-0Away Record6-9-2
1-9-0Last 10 Games2-8-0
3.54Goals Per Game3.31
6.03Goals Against Per Game3.31
24.21%Power Play Percentage23.29%
67.61%Penalty Kill Percentage69.00%
Broncos
13-16-5, 31pts
Day 82
Admirals
6-28-1, 13pts
Team Stats
W1StreakL3
8-10-0Home Record2-14-1
5-6-5Away Record4-14-0
3-5-2Last 10 Games1-9-0
3.53Goals Per Game3.54
4.21Goals Against Per Game3.54
20.55%Power Play Percentage24.21%
61.76%Penalty Kill Percentage67.61%
Team Leaders
Jonny BrodzinskiGoals
Jonny Brodzinski
12
Alexey ToropchenkoAssists
Alexey Toropchenko
22
Alexey ToropchenkoPoints
Alexey Toropchenko
30
Max SassonPlus/Minus
Max Sasson
-2
Dennis HildebyWins
Dennis Hildeby
5
Nikke KokkoSave Percentage
Nikke Kokko
0.884

Team Stats
Goals For
124
3.54 GFG
Shots For
1247
35.63 Avg
Power Play Percentage
24.2%
23 GF
Offensive Zone Start
39.5%
Goals Against
211
6.03 GAA
Shots Against
1349
38.54 Avg
Penalty Kill Percentage
67.6%%
23 GA
Defensive Zone Start
37.3%
Team Info

General ManagerKeith
CoachJacques Martin
DivisionMetropolitan
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team25
Farm Team19
Contract Limit44 / 50
Prospects9


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Frank Nazar (R)X100.00635686706878716962687065645560041640212500,000$
2Alexey ToropchenkoX100.00846186668171907050655169506366039640262500,000$
3Jonny BrodzinskiX100.00645595687569687362637160517574039640322500,000$
4Elmer Soderblom (R)X100.00775887658971576650676159515861053620244500,000$
5Oskar Bäck (R)X100.00605593647369845966645072506266037610252600,000$
6Max SassonX100.00605099646465576558605759506262040580251500,000$
7Carl GrundstromX100.00855880637165715850615056506564036580282500,000$
8John HaydenX100.00736184588057545568525057507168059560302500,000$
9Justin Robidas (R)X100.00503589576150515550505450515664026520223500,000$
10Nikita GrebenkinX100.00595785587650515050505048506262023510222500,000$
11Danil GushchinX100.00505776515753535250495048506363022500233500,000$
12Joel HanleyX100.00706484626674726750605175558078037650341500,000$
13Henry ThrunX100.00686783637672766750615265556163036630241500,000$
14Ryan SheaX100.00625984627968646250545070556970035620282500,000$
15Isaiah George (R)X100.00595790617167616450565265555559038590213500,000$
16Ville Ottavainen (R)X100.00553594587750525050605049555970037540233500,000$
Scratches
1Brett Berard (R)X97.08705587656165606650596457515860030590233500,000$
2Devin KaplanX100.00503589577150515050505050505355020510213500,000$
3Jack FinleyX100.00503589578050505050505050505959020510232700,000$
4Alex Barré-BouletX100.00504353576250515050505050506564020510282500,000$
5Nikita PrishchepovX100.00525089576950505050505050505355020510212500,000$
6Isak RosenX100.00505089576350514950505049505657023500222500,000$
TEAM AVERAGE99.8762528661716161595357545852626403357
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Dennis Hildeby (R)100.005163608352464646465050595902530243500,000$
2Nikke Kokko (R)100.0050605971525249494950505252034530213500,000$
Scratches
1Spencer Martin100.0050646073505050505050596969033550301500,000$
TEAM AVERAGE100.005062607651494848485053606002354
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jacques Martin5050505050501CAN715500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alexey ToropchenkoAdmirals (NYI)RW2682230-23140583969216011.59%752220.093581059000050061.54%3900001.1500000032
2Jonny BrodzinskiAdmirals (NYI)C26121628-2420950112437310.71%1048718.7534722570001190056.92%57800011.1500000212
3Frank NazarAdmirals (NYI)C26101626-2000156581197012.35%653920.743699601014452055.07%67000000.9600000111
4Joel HanleyAdmirals (NYI)D2631922-2316061324313296.98%5467425.941451252000030000%000000.6500000510
5Brett BerardAdmirals (NYI)LW2511819-2100212975204314.67%649719.9122413570003241042.11%3800000.7600000211
6Carl GrundstromAdmirals (NYI)RW2661117-26160611746153113.04%548418.640441059000010054.84%3100000.7000000122
7Cole SillingerNew York IslandersC/LW1510717-1220182676234613.16%436824.592028320110231041.67%2400010.9200000222
8Henry ThrunAdmirals (NYI)D2641317-3710055353082413.33%4164324.733361553000030000%000000.5300000001
9Isaiah GeorgeAdmirals (NYI)D2651116-304019294061812.50%4758722.593252359000031000%000000.5400000001
10Oskar BäckAdmirals (NYI)C2651015-262020715213549.62%846818.03022490000181058.07%47700000.6400000100
11Ryan SheaAdmirals (NYI)D2611112-3014032232311254.35%4362624.110221055000031000%000000.3800000020
12Max SassonAdmirals (NYI)C267310-2206152281531.82%31786.8510112000020058.90%14600001.1200000003
13Elmer SoderblomAdmirals (NYI)LW7268-900851971510.53%116623.73011118000090053.33%1500000.9600000010
14Nikita GrebenkinAdmirals (NYI)RW26145-246024111910185.26%241215.8700004000010050.00%2600000.2400000000
15Ville OttavainenAdmirals (NYI)D26134-138014932333.33%2143416.73000115000014000%000000.1800000100
16Erik HaulaNew York IslandersLW2202-24027131315.38%74723.93000020000300100.00%200000.8400000000
17Danil GushchinAdmirals (NYI)LW26112-29001911208155.00%543616.81000080000110048.28%2900000.0900000000
18Isak RosenAdmirals (NYI)RW17000-600326330%11036.0600000000000050.00%20000000000000
Team Total or Average40489161250-357100044547674923154511.88%271768019.0121355613960911283065056.14%207700020.6500000151415
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Dennis HildebyAdmirals (NYI)2651910.8166.1411342011663000100251011
2Nikke KokkoAdmirals (NYI)120100.8845.13398003429300000024110
3Spencer MartinAdmirals (NYI)10000.76510.0024004170000011000
Team Total or Average3952010.8365.9315572015494000102626121


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Alex Barré-BouletAdmirals (NYI)C281997-05-21CANNo178 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Alexey ToropchenkoAdmirals (NYI)RW261999-06-25RUSNo222 Lbs6 ft6NoNoTrade2025-07-11NoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Brett BerardAdmirals (NYI)LW232002-09-09USAYes175 Lbs5 ft9NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Carl GrundstromAdmirals (NYI)RW281997-12-01SWENo200 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Danil GushchinAdmirals (NYI)LW232002-02-06RUSNo165 Lbs5 ft8NoNoTrade2024-12-31NoNo32024-08-13FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Dennis HildebyAdmirals (NYI)G242001-08-19SWEYes224 Lbs6 ft7NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Devin KaplanAdmirals (NYI)RW212004-01-10USANo199 Lbs6 ft2NoNoFree AgentNoNo32025-08-09FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Elmer SoderblomAdmirals (NYI)LW242001-07-05SWEYes246 Lbs6 ft8NoNoTrade2025-12-07NoNo42025-07-27FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Link / NHL Link
Frank NazarAdmirals (NYI)C212004-01-14USAYes190 Lbs5 ft10NoNoTrade2024-12-31NoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Henry ThrunAdmirals (NYI)D242001-03-12USANo210 Lbs6 ft2NoNoTrade2024-12-31NoNo1FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Link / NHL Link
Isaiah GeorgeAdmirals (NYI)D212004-02-15CANYes196 Lbs6 ft1NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Isak RosenAdmirals (NYI)RW222003-03-15SWENo180 Lbs6 ft0NoNoTrade2025-06-22NoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Jack FinleyAdmirals (NYI)C232002-09-02USANo220 Lbs6 ft6NoNoFree AgentNoNo22025-08-10FalseFalsePro & Farm700,000$70,000$40,056$No700,000$--------700,000$--------No--------Link / NHL Link
Joel HanleyAdmirals (NYI)D341991-06-08CANNo186 Lbs5 ft11NoNoAssign ManuallyNoNo12025-04-13FalseFalsePro & Farm500,000$0$0$No---------------------------Link / NHL Link
John HaydenAdmirals (NYI)C301995-02-14USANo223 Lbs6 ft3NoNoAssign ManuallyNoNo22025-06-14FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Link / NHL Link
Jonny BrodzinskiAdmirals (NYI)C321993-06-19USANo211 Lbs6 ft0NoNoAssign ManuallyNoNo22025-03-28FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Link / NHL Link
Justin RobidasAdmirals (NYI)C222003-03-13USAYes176 Lbs5 ft8NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Max SassonAdmirals (NYI)C252000-09-05USANo181 Lbs6 ft1NoNoFree AgentNoNo12025-08-19FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Link / NHL Link
Nikita GrebenkinAdmirals (NYI)RW222003-05-02RUSNo210 Lbs6 ft2NoNoFree AgentNoNo22025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Nikita PrishchepovAdmirals (NYI)C212004-02-20RUSNo194 Lbs6 ft1NoNoFree AgentNoNo22025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Nikke KokkoAdmirals (NYI)G212004-03-14FINYes184 Lbs6 ft3NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Oskar BäckAdmirals (NYI)C252000-03-12SWEYes202 Lbs6 ft4NoNoFree AgentNoNo22025-08-07FalseFalsePro & Farm600,000$60,000$34,333$No600,000$--------600,000$--------No--------Link
Ryan SheaAdmirals (NYI)D281997-02-11USANo220 Lbs6 ft1NoNoAssign ManuallyNoNo22025-06-14FalseFalsePro & Farm500,000$0$0$No500,000$-----------------No--------Link / NHL Link
Spencer MartinAdmirals (NYI)G301995-06-08CANNo191 Lbs6 ft3NoNoFree AgentNoNo12025-07-23FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Link / NHL Link
Ville OttavainenAdmirals (NYI)D232002-08-12FINYes210 Lbs6 ft5NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2524.84200 Lbs6 ft22.24512,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Elmer SoderblomFrank NazarAlexey Toropchenko40122
2Jonny BrodzinskiCarl Grundstrom30122
3Danil GushchinOskar BäckNikita Grebenkin30122
4Elmer SoderblomMax SassonAlexey Toropchenko0122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyHenry Thrun40122
2Ryan SheaIsaiah George30122
3Ville OttavainenJoel Hanley20122
4Henry ThrunRyan Shea10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Elmer SoderblomFrank NazarAlexey Toropchenko60122
2Jonny BrodzinskiCarl Grundstrom40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyHenry Thrun60122
2Ryan SheaIsaiah George40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Frank NazarElmer Soderblom60122
2Jonny Brodzinski40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyHenry Thrun60122
2Ryan SheaIsaiah George40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Frank Nazar60122Joel HanleyHenry Thrun60122
2Jonny Brodzinski40122Ryan SheaIsaiah George40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Frank NazarElmer Soderblom60122
2Jonny Brodzinski40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyHenry Thrun60122
2Ryan SheaIsaiah George40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Elmer SoderblomFrank NazarAlexey ToropchenkoJoel HanleyHenry Thrun
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Elmer SoderblomFrank NazarAlexey ToropchenkoJoel HanleyHenry Thrun
Extra Forwards
Normal PowerPlayPenalty Kill
Oskar Bäck, , Carl GrundstromOskar Bäck, Oskar Bäck
Extra Defensemen
Normal PowerPlayPenalty Kill
Ryan Shea, Isaiah George, Ville OttavainenRyan SheaRyan Shea, Isaiah George
Penalty Shots
Alexey Toropchenko, Frank Nazar, Jonny Brodzinski, Elmer Soderblom, Oskar Bäck
Goalie
#1 : Dennis Hildeby, #2 : Nikke Kokko


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americiens11000000871000000000001100000087121.0008132100534328047411434402041202267457.14%110.00%0614120550.95%580113751.01%36870552.20%868617787237444224
2Barons2110000049-51010000017-61100000032120.50048120053432804241143440205612026200.00%000%0614120550.95%580113751.01%36870552.20%868617787237444224
3Broncos2020000038-51010000023-11010000015-400.000358005343280434114344020481614213133.33%7271.43%0614120550.95%580113751.01%36870552.20%868617787237444224
4Bruins1010000024-2000000000001010000024-200.0002460053432802941143440202916815100.00%30100.00%0614120550.95%580113751.01%36870552.20%868617787237444224
5Butter Knives302001001021-1120100100712-51010000039-610.1671017270053432809341143440201463618579444.44%8275.00%1614120550.95%580113751.01%36870552.20%868617787237444224
6Fighting Pandas11000000431000000000001100000043121.0004812005343280254114344020226015500.00%000%0614120550.95%580113751.01%36870552.20%868617787237444224
7Firebirds312000001724-7211000001316-31010000048-420.33317324900534328013341143440201234112687228.57%6266.67%0614120550.95%580113751.01%36870552.20%868617787237444224
8Griffins606000002341-18505000002034-141010000037-400.0002344671053432802534114344020302792613415320.00%13469.23%1614120550.95%580113751.01%36870552.20%868617787237444224
9Ice Bats1010000057-2000000000001010000057-200.00059140053432803041143440204680173133.33%000%0614120550.95%580113751.01%36870552.20%868617787237444224
10Lynx20200000713-61010000056-11010000027-500.000713200053432808941143440208329841400.00%4325.00%0614120550.95%580113751.01%36870552.20%868617787237444224
11Marlies21100000880110000004311010000045-120.500814220053432805141143440204718163112541.67%7185.71%0614120550.95%580113751.01%36870552.20%868617787237444224
12Nordiks1010000028-6000000000001010000028-600.00023500534328022411434402045202193133.33%10100.00%0614120550.95%580113751.01%36870552.20%868617787237444224
13Quacken20200000313-101010000027-51010000016-500.00036900534328046411434402063181234100.00%6433.33%0614120550.95%580113751.01%36870552.20%868617787237444224
14Roadrunners30300000813-51010000035-22020000058-300.00081422005343280984114344020892914479222.22%7185.71%0614120550.95%580113751.01%36870552.20%868617787237444224
15Tomahawks1010000037-41010000037-40000000000000.0003690053432804941143440204712023300.00%000%0614120550.95%580113751.01%36870552.20%868617787237444224
16Wombats312000001216-41010000036-321100000910-120.3331223350053432801564114344020111241473800.00%7357.14%0614120550.95%580113751.01%36870552.20%868617787237444224
17Wranglers1010000059-4000000000001010000059-400.0005914005343280414114344020518219300.00%10100.00%0614120550.95%580113751.01%36870552.20%868617787237444224
Total3562800100124211-87172140010063106-43184140000061105-44130.186124228352105343280124741143440201349392148666952324.21%712367.61%2614120550.95%580113751.01%36870552.20%868617787237444224
_Since Last GM Reset3562800100124211-87172140010063106-43184140000061105-44130.186124228352105343280124741143440201349392148666952324.21%712367.61%2614120550.95%580113751.01%36870552.20%868617787237444224
_Vs Conference215150010079117-38926001003751-141239000004266-24110.262791432220053432807644114344020739235106394651827.69%501570.00%1614120550.95%580113751.01%36870552.20%868617787237444224
_Vs Division1429000005589-34914000003859-21515000001730-1340.1435510415910534328058541143440205841606629633618.18%331166.67%1614120550.95%580113751.01%36870552.20%868617787237444224

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3513L31242283521247134939214866610
All Games
GPWLOTWOTL SOWSOLGFGA
356280100124211
Home Games
GPWLOTWOTL SOWSOLGFGA
17214010063106
Visitor Games
GPWLOTWOTL SOWSOLGFGA
18414000061105
Last 10 Games
WLOTWOTL SOWSOL
190000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
952324.21%712367.61%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
41143440205343280
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
614120550.95%580113751.01%36870552.20%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
868617787237444224


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
312Lynx6Admirals5LBoxScore
625Griffins6Admirals4LBoxScore
835Admirals5Wombats4WBoxScore
1044Admirals2Lynx7LBoxScore
1255Griffins8Admirals5LBoxScore
1467Wombats6Admirals3LBoxScore
1675Admirals4Firebirds8LBoxScore
1782Admirals4Wombats6LBoxScore
2099Roadrunners5Admirals3LBoxScore
21103Admirals2Bruins4LBoxScore
24116Griffins8Admirals6LBoxScore
26127Admirals2Roadrunners3LBoxScore
29139Firebirds7Admirals8WBoxScore
33159Broncos3Admirals2LBoxScore
35170Admirals3Roadrunners5LBoxScore
38179Butter Knives4Admirals3LXBoxScore
41195Admirals2Nordiks8LBoxScore
43204Firebirds9Admirals5LBoxScore
45209Admirals1Quacken6LBoxScore
47223Tomahawks7Admirals3LBoxScore
49233Admirals5Wranglers9LBoxScore
50244Barons7Admirals1LBoxScore
52254Admirals3Barons2WBoxScore
54268Marlies3Admirals4WBoxScore
56278Admirals4Fighting Pandas3WBoxScore
58289Quacken7Admirals2LBoxScore
61303Admirals3Griffins7LBoxScore
62310Admirals3Butter Knives9LBoxScore
65320Butter Knives8Admirals4LBoxScore
67334Griffins7Admirals4LBoxScore
69340Admirals5Ice Bats7LBoxScore
71354Admirals8Americiens7WBoxScore
73363Griffins5Admirals1LBoxScore
75373Admirals4Marlies5LBoxScore
76378Admirals1Broncos5LBoxScore
78389Broncos-Admirals-
81403Admirals-Bruins-
82413Broncos-Admirals-
84425Roadrunners-Admirals-
89445Ice Bats-Admirals-
93464Admirals-Americiens-
94468Ice Bats-Admirals-
98485Admirals-Roadrunners-
99492Fighting Pandas-Admirals-
102509Lions-Admirals-
104518Admirals-Tomahawks-
106531Admirals-Butter Knives-
107535Fighting Pandas-Admirals-
110553Aces-Admirals-
112565Admirals-Firebirds-
113576Barracuda-Admirals-
116586Admirals-Marlies-
119597Admirals-Firebirds-
120604Canucks-Admirals-
122620Wranglers-Admirals-
124628Admirals-Tomahawks-
126641Roadrunners-Admirals-
131662Firebirds-Admirals-
133679Admirals-Canucks-
134684Americiens-Admirals-
137696Admirals-Canucks-
139705Admirals-Lions-
140711Bruins-Admirals-
143727Lynx-Admirals-
145736Admirals-Broncos-
147744Admirals-Barracuda-
148753Americiens-Admirals-
150765Admirals-Fighting Pandas-
152776Lynx-Admirals-
155789Admirals-Bruins-
156794Admirals-Wombats-
157799Admirals-Broncos-
158803Marlies-Admirals-
161820Admirals-Aces-
162824Nordiks-Admirals-
164837Admirals-Wombats-
166842Admirals-Aces-
167847Admirals-Lynx-
169855Wombats-Admirals-
172871Admirals-Lynx-
174879Wombats-Admirals-
178895Bruins-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
24 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
743,661$ 1,280,000$ 1,080,000$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,080,000$ 444,208$ 25 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 103 9,889$ 1,018,567$




Admirals Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Admirals Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Admirals Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA